论文标题
关于Q形成的Araki-Woods von Neumann代数的种子
On the factoriality of q-deformed Araki-Woods von Neumann algebras
论文作者
论文摘要
$ q $ - 成型的Araki-Woods von Neumann代数$γ_Q(\ Mathcal {h} _ \ Mathbb {r},u_t)^{\ prime \ prime \ prime \ prime \ prime} $是所有$ q \ in(-1,1,1)$ n e(-1,1)$ wher $ dim(-1,1) 3 $。当$ dim(\ mathcal {h} _ \ mathbb {r})= 2 $时,对于所有$ q $,只要定义$(u_t)$的参数为“小”或$ 1 $ $($ $ $($ TRIVIAL $)$),则它们也是所有因素。
The $q$-deformed Araki-Woods von Neumann algebras $Γ_q(\mathcal{H}_\mathbb{R}, U_t)^{\prime \prime}$ are factors for all $q\in (-1,1)$ whenever $dim(\mathcal{H}_\mathbb{R})\geq 3$. When $dim(\mathcal{H}_\mathbb{R})=2$ they are factors as well for all $q$ so long as the parameter defining $(U_t)$ is `small' or $1$ $($trivial$)$ as the case may be.