论文标题
无花果:探索固定时间预算的大规模未知环境
FIG-OP: Exploring Large-Scale Unknown Environments on a Fixed Time Budget
论文作者
论文摘要
我们提出了一种在任务时间限制下自动探索大规模未知环境的方法。我们首先提出前载信息增益为导向问题(FIG-OP) - 传统定向问题的概括,在该问题中,可靠的环境模型不再存在。 FIG-OP通过增加贪婪的激励措施来解决预期信息增益来解决模型的不确定性,从而有效加快了发现新区域的时刻。为了跨多公里环境进行推理,我们通过从拓扑和度量图中汇总信息来构建的信息有效的世界表示。我们的方法在各种复杂的环境中进行了广泛的测试和野外硬化,从地铁系统到矿山。在比较模拟中,我们观察到,图形溶液比贪婪和传统定向急救方法产生的解决方案提高了覆盖效率(即分别是严重和最小的模型不确定性假设)。
We present a method for autonomous exploration of large-scale unknown environments under mission time constraints. We start by proposing the Frontloaded Information Gain Orienteering Problem (FIG-OP) -- a generalization of the traditional orienteering problem where the assumption of a reliable environmental model no longer holds. The FIG-OP addresses model uncertainty by frontloading expected information gain through the addition of a greedy incentive, effectively expediting the moment in which new area is uncovered. In order to reason across multi-kilometre environments, we solve FIG-OP over an information-efficient world representation, constructed through the aggregation of information from a topological and metric map. Our method was extensively tested and field-hardened across various complex environments, ranging from subway systems to mines. In comparative simulations, we observe that the FIG-OP solution exhibits improved coverage efficiency over solutions generated by greedy and traditional orienteering-based approaches (i.e. severe and minimal model uncertainty assumptions, respectively).