论文标题

通过深度共同信息估计的神经主题建模

Neural Topic Modeling with Deep Mutual Information Estimation

论文作者

Xu, Kang, Lu, Xiaoqiu, Li, Yuan-fang, Wu, Tongtong, Qi, Guilin, Ye, Ning, Wang, Dong, Zhou, Zheng

论文摘要

新兴的神经主题模型使主题建模在无监督的文本挖掘中更容易适应和扩展。但是,现有的神经主题模型很难将文档的代表性信息保留在学习的主题表示中。在本文中,我们提出了一个神经主题模型,该模型结合了深度共同信息估计,即具有深层共同信息估计(NTM-DMIE)的神经主题建模。 NTM-DMIE是一种用于主题学习的神经网络方法,可最大程度地提高输入文档及其潜在主题表示之间的相互信息。为了学习强大的主题表示,我们将歧视者纳入了通过对抗学习来歧视负面示例和积极的例子。此外,我们同时使用全球和本地共同信息来保留主题表示中输入文档的丰富信息。我们在几个指标上评估了NTM-DMIE,包括文本聚类的准确性,主题表示,主题唯一性和主题连贯性。与现有方法相比,实验结果表明,NTM-DMIE在四个数据集上的所有指标中的表现都能胜过。

The emerging neural topic models make topic modeling more easily adaptable and extendable in unsupervised text mining. However, the existing neural topic models is difficult to retain representative information of the documents within the learnt topic representation. In this paper, we propose a neural topic model which incorporates deep mutual information estimation, i.e., Neural Topic Modeling with Deep Mutual Information Estimation(NTM-DMIE). NTM-DMIE is a neural network method for topic learning which maximizes the mutual information between the input documents and their latent topic representation. To learn robust topic representation, we incorporate the discriminator to discriminate negative examples and positive examples via adversarial learning. Moreover, we use both global and local mutual information to preserve the rich information of the input documents in the topic representation. We evaluate NTM-DMIE on several metrics, including accuracy of text clustering, with topic representation, topic uniqueness and topic coherence. Compared to the existing methods, the experimental results show that NTM-DMIE can outperform in all the metrics on the four datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源