论文标题
针对预定作业的个性化执行时间优化
Personalized Execution Time Optimization for the Scheduled Jobs
论文作者
论文摘要
预定的批处理作业已在异步计算平台上广泛使用,以执行各种企业应用程序,包括现代推荐系统的计划通知和候选候选人的预成立。在正确的时间将信息传递或更新信息以维护用户体验和执行影响很重要。但是,为用户基础计划的作业提供多功能执行时间优化解决方案是一项挑战,以满足各种产品方案,同时保持合理的基础架构资源消耗。在本文中,我们描述了如何在最佳时间选择中应用学习级别的方法以及“最佳时间政策”。此外,我们提出了一个合奏学习者,以在我们的执行时间计划决策中有效利用多个用户活动信号来最大程度地减少排名损失。尤其是,我们观察到蚕食跨用例以竞争用户的高峰时段,并引入协调系统来减轻问题。我们的优化方法已通过每天为数十亿个用户服务的生产流量成功进行了测试,各种产品指标(包括通知和内容候选人的生成)的统计学上有显着改善。据我们所知,我们的研究代表了针对大型工业规模的预定作业的第一个基于ML基于ML的多租户解决方案交叉不同的产品领域。
Scheduled batch jobs have been widely used on the asynchronous computing platforms to execute various enterprise applications, including the scheduled notifications and the candidate pre-computation for the modern recommender systems. It is important to deliver or update the information to the users at the right time to maintain the user experience and the execution impact. However, it is challenging to provide a versatile execution time optimization solution for the user-basis scheduled jobs to satisfy various product scenarios while maintaining reasonable infrastructure resource consumption. In this paper, we describe how we apply a learning-to-rank approach plus a "best time policy" in the best time selection. In addition, we propose an ensemble learner to minimize the ranking loss by efficiently leveraging multiple streams of user activity signals in our scheduling decisions of the execution time. Especially, we observe the cannibalization cross use cases to compete the user's peak time slot and introduce a coordination system to mitigate the problem. Our optimization approach has been successfully tested with production traffic that serves billions of users per day, with statistically significant improvements in various product metrics, including the notifications and content candidate generation. To the best of our knowledge, our study represents the first ML-based multi-tenant solution of the execution time optimization problem for the scheduled jobs at a large industrial scale cross different product domains.