论文标题

通过深层神经网络对脑连接的形状进行建模

Modeling the Shape of the Brain Connectome via Deep Neural Networks

论文作者

Dai, Haocheng, Bauer, Martin, Fletcher, P. Thomas, Joshi, Sarang

论文摘要

扩散加权的磁共振成像(DWI)的目的是推断个体受试者大脑体内的结构连通性。为了统计研究正常和异常脑连接组之间的变异性和差异,需要神经连接的数学模型。在本文中,我们将大脑连接组表示为Riemannian歧管,这使我们能够将神经连接建模为大地测量学。这导致了一个充满挑战的问题,即估计与DWI数据兼容的Riemannian度量,即,地理曲线代表连接组学的单个纤维区域。我们将这一问题减少到解决高度非线性的部分微分方程(PDE),并研究卷积编码器解码器神经网络(CEDNN)在解决这一几何动机PDE方面的适用性。我们的方法在与白质途径的测量学对准方面达到了出色的性能,并解决了以前的地球拖拉术方法中长期存在的问题:无法恢复具有高忠诚度的越过纤维。

The goal of diffusion-weighted magnetic resonance imaging (DWI) is to infer the structural connectivity of an individual subject's brain in vivo. To statistically study the variability and differences between normal and abnormal brain connectomes, a mathematical model of the neural connections is required. In this paper, we represent the brain connectome as a Riemannian manifold, which allows us to model neural connections as geodesics. This leads to the challenging problem of estimating a Riemannian metric that is compatible with the DWI data, i.e., a metric such that the geodesic curves represent individual fiber tracts of the connectomics. We reduce this problem to that of solving a highly nonlinear set of partial differential equations (PDEs) and study the applicability of convolutional encoder-decoder neural networks (CEDNNs) for solving this geometrically motivated PDE. Our method achieves excellent performance in the alignment of geodesics with white matter pathways and tackles a long-standing issue in previous geodesic tractography methods: the inability to recover crossing fibers with high fidelity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源