论文标题
抽象切除和$ \ ell^1 $ - 知识
Abstract Excision and $\ell^1$-Homology
论文作者
论文摘要
我们使用$ \ infty $ - 类别的语言的兴奋剂函数的抽象设置来表明,Espisive Foundor对$ \ ell^1 $ - HOMOMOLOGY FOUNDOR的最佳近似是微不足道的。 然后,我们努力为那些没有$ \ infty $类别感到宾至如归的人在概念层面上解释二手语言,证明奇异链复合函数在抽象的意义上确实具有解散性,并显示后者如何以Mayer-Vietoris序列形式出现经典的剪切陈述。
We use the abstract setting of excisive functors in the language of $\infty$-categories to show that the best approximation to the $\ell^1$-homology functor by an excisive functor is trivial. Then we make an effort to explain the used language on a conceptual level for those who do not feel at home with $\infty$-categories, prove that the singular chain complex functor is indeed excisive in the abstract sense, and show how the latter leads to classical excision statements in the form of Mayer-Vietoris sequences.