论文标题
紧张的三层INAS/Gainsb量子井中的大型倒置带隙
Large inverted band-gap in strained three-layer InAs/GaInSb quantum wells
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Quantum spin Hall insulators (QSHIs) based on HgTe and three-layer InAs/GaSb quantum wells (QWs) have comparable bulk band-gaps of about 10--18~meV. The former however features a band-gap vanishing with temperature, while the gap in InAs/GaSb QSHIs is rather temperature-independent.Here, we report on the realization of large inverted band-gap in strained three-layer InAs/GaInSb QWs. By temperature-dependent magnetotransport measurements of gated Hall bar devices, we extract a gap as high as 45 meV. Combining local and non-local measurements, we attribute the edge conductivity observed at temperatures up to 40 K to the topological edge channels with equilibration lengths of a few micrometers. Our findings pave the way toward manipulating edge transport at high temperatures in QW heterostructures.