论文标题

基于机器学习的多模式神经影像学基因组学痴呆症评分,以预测未来转化为阿尔茨海默氏病

Machine Learning Based Multimodal Neuroimaging Genomics Dementia Score for Predicting Future Conversion to Alzheimer's Disease

论文作者

Mirabnahrazam, Ghazal, Ma, Da, Lee, Sieun, Popuri, Karteek, Lee, Hyunwoo, Cao, Jiguo, Wang, Lei, Galvin, James E, Beg, Mirza Faisal, Initiative, the Alzheimer's Disease Neuroimaging

论文摘要

背景:包含磁共振成像(MRI)和遗传数据的数据库的可用性提高,使研究人员能够利用多模式数据更好地了解阿尔茨海默氏症类型(DAT)的痴呆症的特征。目的:这项研究的目的是开发和分析可以帮助预测DAT的发展和发展的新型生物标志物。方法:我们使用功能选择和集合学习分类器来开发基于图像/基因型的DAT分数,该分数代表了一个受试者将来开发DAT的可能性。使用了三种特征类型:仅MRI,仅遗传和组合多模式数据。我们使用一种新颖的数据分层方法来更好地表示DAT的不同阶段。使用预定义的0.5个DAT分数阈值,我们预测了一个受试者将来是否会发展DAT。结果:我们关于阿尔茨海默氏病神经影像学计划(ADNI)数据库的结果表明,使用遗传数据的痴呆得分可以更好地预测当前正常对照对象的未来数据(准确性= 0.857)与MRI相比(准确性= 0.143),而MRI可以更好地表征与稳定的认知能力相比= 0.61的特征。 (精度= 0.356)。 MRI和遗传数据组合显示了其余分层组的分类性能提高。结论:MRI和遗传数据可以以不同的方式促进DAT预测。 MRI数据反映了大脑的解剖学变化,而遗传数据可以检测到症状发作之前的DAT进展风险。以正确的方式将来自多模式数据的信息组合可以提高预测性能。

Background: The increasing availability of databases containing both magnetic resonance imaging (MRI) and genetic data allows researchers to utilize multimodal data to better understand the characteristics of dementia of Alzheimer's type (DAT). Objective: The goal of this study was to develop and analyze novel biomarkers that can help predict the development and progression of DAT. Methods: We used feature selection and ensemble learning classifier to develop an image/genotype-based DAT score that represents a subject's likelihood of developing DAT in the future. Three feature types were used: MRI only, genetic only, and combined multimodal data. We used a novel data stratification method to better represent different stages of DAT. Using a pre-defined 0.5 threshold on DAT scores, we predicted whether or not a subject would develop DAT in the future. Results: Our results on Alzheimer's Disease Neuroimaging Initiative (ADNI) database showed that dementia scores using genetic data could better predict future DAT progression for currently normal control subjects (Accuracy=0.857) compared to MRI (Accuracy=0.143), while MRI can better characterize subjects with stable mild cognitive impairment (Accuracy=0.614) compared to genetics (Accuracy=0.356). Combining MRI and genetic data showed improved classification performance in the remaining stratified groups. Conclusion: MRI and genetic data can contribute to DAT prediction in different ways. MRI data reflects anatomical changes in the brain, while genetic data can detect the risk of DAT progression prior to the symptomatic onset. Combining information from multimodal data in the right way can improve prediction performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源