论文标题
在有限的周期性PT对称波导网络中
Wave propagation, bidirectional transparency, and coherent perfect absorption-lasing in finite periodic PT-symmetric waveguide networks
论文作者
论文摘要
我们从理论和数值上研究了由有限数量的单位细胞组成的周期性平价(PT) - 对称波导网络的散射行为。具体而言,我们在有限的周期性光学波导网络中提出了严格且正式的表达式,用于波传播,双向反射以及连贯的完美吸收和激光(CPAL)。通过使用从观察到PT对称传递矩阵,Lorentz互惠定理和非疑问BLOCH相的广义参数空间,我们观察到,当单位电池在PT损坏相位或异常点上操作时,系统可以始终具有传播模式,独立于单位单元组的数量和传输相。另一方面,当单位电池在精确的PT对称相处操作时,传播波的形成将取决于单位电池的传输阶段。更有趣的是,我们发现,即使单位电池在特殊点没有运行,也可以通过选择适当数量的Unite细胞和特定的PT阶段来实现带有双向的反射以及统一传播。我们还找到了实施CPAL的两种方法。一种是利用在CPAL点运行的单元单元的奇数。另一种方法是用适当数量的单位单元格操纵特定的破碎相,同时使传输阶段为null。我们认为,这项工作可能会提供理论上的基础,用于研究PT-对称光子学的非凡波现象,并可能为操纵光的操纵而开辟途径。
We theoretically and numerically investigate the scattering behavior of a periodic parity-time (PT)-symmetric waveguide network composed of a finite number of unit cells. Specifically, we put forward rigorous and formally exact expressions for wave propagation, bi-directional reflectionless, and coherent perfect absorption and lasing (CPAL) occuring in a finite periodic optical waveguide network. Through the use of the generalized parametric space derived from observation of PT-symmetric transfer matrix, Lorentz reciprocity theorem and non-imaginary Bloch phase, we observe that when the unit cell is operated at the PT broken phase or exceptional point, the system can always have propagating modes, independent of the number and transmission phase of the unit cell. On the other hand, when the unit cell is operated at the exact PT-symmetric phase, the formation of propagating waves would depend on the transmission phase of the unit cell. More interestingly, we find that even though the unit cell is not operated at the exceptional point, reflectionless with bi-directionality as well as unity transmittance can be achieved by choosing appropriate number of unite cells and specific PT phases. We also find two approaches to implement CPAL. One is to exploit odd number of the unit cell operated at the CPAL point. Another way is to manipulate specific broken phase with an appropriate number of the unit cells, while making transmission phase to be null. We believe this work may offer a theoretical underpinnings for studying extraordinary wave phenomena of PT-symmetric photonics and may open avenues for manipulation of light.