论文标题

分配密度功能理论中的分裂电子

Split Electrons in Partition Density Functional Theory

论文作者

Zhang, Kui, Wasserman, Adam

论文摘要

分区密度功能理论(P-DFT)是一种密度嵌入方法,它通过最小化受局部密度约束和全局电子数限制的片段能量的总和来将分子划分为碎片。为了进行这种最小化,我们研究了两阶段的程序,其中当电子从较低的电负性片段流向较高的电负性碎片时,片段能量的总和降低了。当所有电负重性相等时,达到全局最小值。非整合碎片种群以两种不同的方式处理:(1)合奏方法(ENS),涉及使用不同数量的电子(始终整数)计算的计算; (2)一种涉及分数占据轨道(FOO)的更简单的方法。我们比较和对比这两种方法,并在一些最简单的系统中检查它们的性能,其中一个可以透明地应用同时应用,包括杂核双原子分子的简单模型和2和4个电子的实际二离子分子。我们发现,尽管ENS和FOO方法都导致了相同的总能量和密度,但与其孤立的对应物相比,ENS片段密度比FOO的碎片密度不那么扭曲,并且它们倾向于保留整数的电子数量。我们确定了ENS人群可以成为分数的条件,并观察到,即使在这种情况下,ENS中传递的总电荷也始终低于FOO。同样,Foo片段偶极矩为ENS偶极子提供了上限。我们解释原因,并讨论含义。

Partition Density Functional Theory (P-DFT) is a density embedding method that partitions a molecule into fragments by minimizing the sum of fragment energies subject to a local density constraint and a global electron-number constraint. To perform this minimization, we study a two-stage procedure in which the sum of fragment energies is lowered when electrons flow from fragments of lower electronegativity to fragments of higher electronegativity. The global minimum is reached when all electronegativities are equal. The non-integral fragment populations are dealt with in two different ways: (1) An ensemble approach (ENS) that involves averaging over calculations with different numbers of electrons (always integers); and (2) A simpler approach that involves fractionally occupying orbitals (FOO). We compare and contrast these two approaches and examine their performance in some of the simplest systems where one can transparently apply both, including simple models of heteronuclear diatomic molecules and actual diatomic molecules with 2 and 4 electrons. We find that, although both ENS and FOO methods lead to the same total energy and density, the ENS fragment densities are less distorted than those of FOO when compared to their isolated counterparts, and they tend to retain integer numbers of electrons. We establish the conditions under which the ENS populations can become fractional and observe that, even in those cases, the total charge transferred is always lower in ENS than in FOO. Similarly, the FOO fragment dipole moments provide an upper bound to the ENS dipoles. We explain why, and discuss implications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源