论文标题
高斯小波系列的慢速,普通和快速点,并应用于分数布朗运动
Slow, ordinary and rapid points for Gaussian Wavelets Series and application to Fractional Brownian Motions
论文作者
论文摘要
我们研究了高斯小波系列的Hölderian规律性,并表明它们几乎可以肯定地显示了三种类型的点:缓慢,普通和快速。特别是,这一事实适用于部分布朗尼运动。我们还表明,对于高斯小波系列的多重分段扩展,该特性很满足。最后,我们指出,慢点的存在是特定于这些功能的。
We study the Hölderian regularity of Gaussian wavelets series and show that they display, almost surely, three types of points: slow, ordinary and rapid. In particular, this fact holds for the Fractional Brownian Motion. We also show that this property is satisfied for a multifractal extension of Gaussian wavelet series. Finally, we remark that the existence of slow points is specific to these functions.