论文标题
外部驱动的等离子体模型作为脉冲星无线电排放的候选
Externally-driven plasma models as candidates for pulsar radio emission
论文作者
论文摘要
来自脉冲星的相干无线电发射起源于激发的等离子体波,在沿脉冲星的开放磁场线沿超相关和强烈磁化的电子 - 峰值等离子对流。传统的连贯无线电排放模型依赖于这对等离子体中的不稳定性。最近提出了替代模型。这些模型吸引了在极差距的时间依赖性对级联进程中,外部电磁场直接耦合到超光电磁场($ lt_2 $模式)。这项工作的目的是使用逼真的PULSAR参数对基于$ LT_2 $模式的等离子体模型提供通用约束。我们发现,与Pair Cascades相关的非常短的时间表不允许在无线电频率上激发$ LT_ {2} $模式,而冲动的能量传递只能增加对等离子颗粒的动力学扩散(“温度”)。此外,在均质等离子体条件下,O模式的两个分支上的等离子体波(即超亮石$ lt_2 $和subluminal $ lt_1 $)无法逃脱等离子体。在强磁对等离子体中,只有非凡模式($ t $模式)才能自由逃脱。我们表明,任何通用的虚拟机制都不会导致$ t $模式的波电场,以使其主要方向平行或垂直于磁场平面,如所观察到的。这种虚拟机制将不可避免地导致信号的去极化,并且无法解释脉冲星中观察到的高度极化的单脉冲。我们建议连贯的曲率辐射作为脉冲星无线电发射机制的有前途的候选者。
Coherent radio emission from pulsars originates from excited plasma waves in an ultra-relativistic and strongly magnetized electron-positron pair plasma streaming along the open magnetic field lines of the pulsar. Traditional coherent radio emission models have relied on instabilities in this pair plasma. Recently alternative models have been suggested. These models appeal to direct coupling of the external electromagnetic field to the superluminal O-mode ($lt_2$ mode) during the time-dependent pair cascade process at the polar gap. The objective of this work is to provide generic constraints on plasma models based on $lt_2$ mode using realistic pulsar parameters. We find that the very short timescale associated with pair cascades does not allow $lt_{2}$ mode to be excited at radio frequencies and the impulsive energy transfer can only increase the kinetic spread ("temperature") of the pair plasma particles. Moreover, under homogeneous plasma conditions, plasma waves on both branches of O-mode (i.e. superluminal $lt_2$ and subluminal $lt_1$) cannot escape the plasma. In the strongly magnetized pair plasma, only the extraordinary mode ($t$ mode) can escape freely. We show that any generic fictitious mechanisms does not result in the wave electric field of $t$ mode to have predominant orientation either parallel or perpendicular to the magnetic field plane as observed. Such fictitious mechanisms will inevitably lead to depolarization of signals and cannot account for the highly polarized single pulses observed in pulsars. We suggest coherent curvature radiation as a promising candidate for pulsar radio emission mechanism.