论文标题

无限维度中的对数Schrödinger方程

Logarithmic Schrödinger Equations in Infinite Dimensions

论文作者

Read, Larry, Zegarlinski, Boguslaw, Zhang, Mengchun

论文摘要

我们在$ \ Mathbb {r}^{\ Mathbb {z}^d} $上研究具有有限范围潜力的对数Schrödinger方程。通过地面代表,我们将全球吉布斯衡量并表明它满足对数Sobolev的不平等。我们发现在任意维度中的解决方案的估计值,并证明了无限维库奇问题的弱解决方案的存在。

We study the logarithmic Schrödinger equation with finite range potential on $\mathbb{R}^{\mathbb{Z}^d}$. Through a ground-state representation, we associate and construct a global Gibbs measure and show that it satisfies a logarithmic Sobolev inequality. We find estimates on the solutions in arbitrary dimension and prove the existence of weak solutions to the infinite-dimensional Cauchy problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源