论文标题
在室温下,双发性钙钛矿微腔中的电气可调浆果曲率和较强的轻度耦合
Electrically tunable Berry curvature and strong light-matter coupling in birefringent perovskite microcavities at room temperature
论文作者
论文摘要
Spinoptronics领域的基础是对具有强光学非线性的设备中光子自旋轨道耦合的良好控制。这样的设备可能是光电子新时代的关键,在该时代,动量和极化程度的光线与电子设备交织并连接。但是,鉴于其电荷中立性,通过电气手段来操纵光子是一项艰巨的任务,并且需要对其培养基进行复杂的电声调制。在这项工作中,我们在Rashba-Dresselhaus旋转轨道耦合场上在室温下介绍了电气可调的微型腔激元激子 - 波利顿共振。我们表明,不同自旋轨道耦合场和还原腔对称的组合导致浆果曲率的可调形成,浆果曲率是量子几何效应的标志。为此,我们实施了一种新型的杂种光子结构的结构,其二维钙钛矿层掺入了充满列米液晶体的微腔中。我们的工作将旋转设备与电子设备接口,通过将电气控制结合到强烈的轻度耦合条件和人造仪表场上。
The field of spinoptronics is underpinned by good control over photonic spin-orbit coupling in devices that possess strong optical nonlinearities. Such devices might hold the key to a new era of optoelectronics where momentum and polarization degrees-of-freedom of light are interwoven and interfaced with electronics. However, manipulating photons through electrical means is a daunting task given their charge neutrality and requires complex electro-optic modulation of their medium. In this work, we present electrically tunable microcavity exciton-polariton resonances in a Rashba-Dresselhaus spin-orbit coupling field at room temperature. We show that a combination of different spin orbit coupling fields and the reduced cavity symmetry leads to tunable formation of Berry curvature, the hallmark of quantum geometrical effects. For this, we have implemented a novel architecture of a hybrid photonic structure with a two-dimensional perovskite layer incorporated into a microcavity filled with nematic liquid crystal. Our work interfaces spinoptronic devices with electronics by combining electrical control over both the strong light-matter coupling conditions and artificial gauge fields.