论文标题

通过自适应自动攻击对对抗性鲁棒性进行实际评估

Practical Evaluation of Adversarial Robustness via Adaptive Auto Attack

论文作者

Liu, Ye, Cheng, Yaya, Gao, Lianli, Liu, Xianglong, Zhang, Qilong, Song, Jingkuan

论文摘要

针对对抗性攻击的国防模型已大大增长,但缺乏实际评估方法阻碍了进步。评估可以定义为在预算数量的迭代次数和测试数据集的情况下,寻找防御模型的鲁棒性下限。一种实际的评估方法应该方便(即无参数),有效(即更少的迭代)和可靠(即接近鲁棒性的下限)。针对这个目标,我们提出了一种无参数的自适应自动攻击($^3 $)评估方法,该方法以测试时间训练方式解决了效率和可靠性。具体而言,通过观察特定的防御模型的对抗性示例遵循其起点的一些规律性,我们设计了一种自适应方向初始化策略以加快评估。此外,为了在预算的迭代次数下处理鲁棒性的下限,我们提出了一种基于在线统计的丢弃策略,该策略自动识别和放弃了难以攻击的图像。广泛的实验证明了我们$^3 $的有效性。特别是,我们将$^3 $应用于近50个广泛使用的防御模型。通过消耗比现有方法的迭代少得多,即平均$ 1/10 $(10 $ \ times $ speed up),我们在所有情况下都能达到较低的稳健精度。值得注意的是,在CVPR 2021中,我们在1681个团队中赢得了$ \ textbf {fierf theep} $,使用这种方法对国防模型竞赛进行了白色框对抗攻击。代码可在:$ \ href {https://github.com/liuye66666/adaptive_auto_attack} {https://github.com/liuye66666/adaptive \ _auto} $

Defense models against adversarial attacks have grown significantly, but the lack of practical evaluation methods has hindered progress. Evaluation can be defined as looking for defense models' lower bound of robustness given a budget number of iterations and a test dataset. A practical evaluation method should be convenient (i.e., parameter-free), efficient (i.e., fewer iterations) and reliable (i.e., approaching the lower bound of robustness). Towards this target, we propose a parameter-free Adaptive Auto Attack (A$^3$) evaluation method which addresses the efficiency and reliability in a test-time-training fashion. Specifically, by observing that adversarial examples to a specific defense model follow some regularities in their starting points, we design an Adaptive Direction Initialization strategy to speed up the evaluation. Furthermore, to approach the lower bound of robustness under the budget number of iterations, we propose an online statistics-based discarding strategy that automatically identifies and abandons hard-to-attack images. Extensive experiments demonstrate the effectiveness of our A$^3$. Particularly, we apply A$^3$ to nearly 50 widely-used defense models. By consuming much fewer iterations than existing methods, i.e., $1/10$ on average (10$\times$ speed up), we achieve lower robust accuracy in all cases. Notably, we won $\textbf{first place}$ out of 1681 teams in CVPR 2021 White-box Adversarial Attacks on Defense Models competitions with this method. Code is available at: $\href{https://github.com/liuye6666/adaptive_auto_attack}{https://github.com/liuye6666/adaptive\_auto\_attack}$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源