论文标题

用于旋转矩阵学习旋转矩阵学习索引的旋转矩阵学习的辅助下降方法

Givens Coordinate Descent Methods for Rotation Matrix Learning in Trainable Embedding Indexes

论文作者

Jiang, Yunjiang, Zhang, Han, Qiu, Yiming, Xiao, Yun, Long, Bo, Yang, Wen-Yun

论文摘要

产品量化(PQ)与空间旋转相结合,广泛用于现代近似邻居(ANN)搜索系统中,以显着压缩磁盘存储以进行嵌入并加快内部产品计算。但是,现有的旋转学习方法最大程度地减少了固定嵌入的量化失真,这些嵌入不适用于不断更新嵌入的端到端训练方案。在本文中,基于谎言组理论的几何直觉,尤其是特殊的正交组$ so(n)$,我们提出了一个块givens坐标下降算法的家族,以学习在任何convex目标上都可以收敛的旋转矩阵。与最先进的SVD方法相比,givens算法更加可行,从而减少了现代GPU的数量级的运行时间,并且根据实验研究更稳定。在端到端培训方案中,它们进一步改善了香草产品量化。

Product quantization (PQ) coupled with a space rotation, is widely used in modern approximate nearest neighbor (ANN) search systems to significantly compress the disk storage for embeddings and speed up the inner product computation. Existing rotation learning methods, however, minimize quantization distortion for fixed embeddings, which are not applicable to an end-to-end training scenario where embeddings are updated constantly. In this paper, based on geometric intuitions from Lie group theory, in particular the special orthogonal group $SO(n)$, we propose a family of block Givens coordinate descent algorithms to learn rotation matrix that are provably convergent on any convex objectives. Compared to the state-of-the-art SVD method, the Givens algorithms are much more parallelizable, reducing runtime by orders of magnitude on modern GPUs, and converge more stably according to experimental studies. They further improve upon vanilla product quantization significantly in an end-to-end training scenario.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源