论文标题
Rydberg Atom阵列的数据增强的变异蒙特卡洛模拟
Data-Enhanced Variational Monte Carlo Simulations for Rydberg Atom Arrays
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Rydberg atom arrays are programmable quantum simulators capable of preparing interacting qubit systems in a variety of quantum states. Due to long experimental preparation times, obtaining projective measurement data can be relatively slow for large arrays, which poses a challenge for state reconstruction methods such as tomography. Today, novel groundstate wavefunction ansätze like recurrent neural networks (RNNs) can be efficiently trained not only from projective measurement data, but also through Hamiltonian-guided variational Monte Carlo (VMC). In this paper, we demonstrate how pretraining modern RNNs on even small amounts of data significantly reduces the convergence time for a subsequent variational optimization of the wavefunction. This suggests that essentially any amount of measurements obtained from a state prepared in an experimental quantum simulator could provide significant value for neural-network-based VMC strategies.