论文标题
部分可观测时空混沌系统的无模型预测
Sharing Generative Models Instead of Private Data: A Simulation Study on Mammography Patch Classification
论文作者
论文摘要
通过深度学习的计算机辅助检测系统对乳腺癌筛查中乳腺癌的早期检测显示出有望在提高乳腺癌的可耐加固性和死亡率方面的潜力。但是,许多临床中心受到可用数据的数量和异质性的限制,以训练此类模型以(i)实现有希望的绩效,并在跨采集方案和域中良好地概括(ii)。由于由于患者的隐私问题而限制了中心之间的数据,因此我们提出了一个潜在的解决方案:在中心之间共享训练有素的生成模型作为替代实际患者数据。在这项工作中,我们使用三个知名的乳腺检查数据集来模拟三个不同的中心,其中一个中心从剩下的两个中心接收了受过训练的生成对抗网络(GAN)的发电机,以增加其培训数据集的大小和异质性。我们使用两个不同的分类模型(a)卷积神经网络和(b)变压器神经网络评估了GAN接收中心测试集对GAN接收中心测试集的乳房摄影斑分类的实用性。我们的实验表明,共享的gans显着提高了变压器和卷积分类模型的性能,并强调了这种方法是中心间数据共享的可行替代方法。
Early detection of breast cancer in mammography screening via deep-learning based computer-aided detection systems shows promising potential in improving the curability and mortality rates of breast cancer. However, many clinical centres are restricted in the amount and heterogeneity of available data to train such models to (i) achieve promising performance and to (ii) generalise well across acquisition protocols and domains. As sharing data between centres is restricted due to patient privacy concerns, we propose a potential solution: sharing trained generative models between centres as substitute for real patient data. In this work, we use three well known mammography datasets to simulate three different centres, where one centre receives the trained generator of Generative Adversarial Networks (GANs) from the two remaining centres in order to augment the size and heterogeneity of its training dataset. We evaluate the utility of this approach on mammography patch classification on the test set of the GAN-receiving centre using two different classification models, (a) a convolutional neural network and (b) a transformer neural network. Our experiments demonstrate that shared GANs notably increase the performance of both transformer and convolutional classification models and highlight this approach as a viable alternative to inter-centre data sharing.