论文标题
塞拉:研究自动化的模块化框架
SIERRA: A Modular Framework for Research Automation
论文作者
论文摘要
现代智能系统研究人员采用了科学方法:他们形成有关系统行为的假设,然后使用一个或多个独立变量来检验其假设进行实验。我们提出了Sierra,这是一个围绕加速研究发展和提高结果可重复性的想法的新颖框架。 Sierra可以轻松地快速为实验指定自变量,生成实验输入,自动运行实验,并处理结果以生成可交付成果(例如图形和视频)。 Sierra提供了可再现的自动化,独立于执行环境(HPC硬件,真实机器人等)和目标平台(任意模拟器或真实机器人),从而实现了精确的实验复制(直至执行环境和平台的限制)。它采用了一种深层的模块化方法,可以轻松自定义和扩展各个研究人员需求的自动化,从而消除了手动实验配置和通过丢弃脚本进行处理的结果。
Modern intelligent systems researchers employ the scientific method: they form hypotheses about system behavior, and then run experiments using one or more independent variables to test their hypotheses. We present SIERRA, a novel framework structured around that idea for accelerating research developments and improving reproducibility of results. SIERRA makes it easy to quickly specify the independent variable(s) for an experiment, generate experimental inputs, automatically run the experiment, and process the results to generate deliverables such as graphs and videos. SIERRA provides reproducible automation independent of the execution environment (HPC hardware, real robots, etc.) and targeted platform (arbitrary simulator or real robots), enabling exact experiment replication (up to the limit of the execution environment and platform). It employs a deeply modular approach that allows easy customization and extension of automation for the needs of individual researchers, thereby eliminating manual experiment configuration and result processing via throw-away scripts.