论文标题

临界拉普拉斯方程和RICCI曲率的注释

A note on the critical Laplace Equation and Ricci curvature

论文作者

Fogagnolo, Mattia, Malchiodi, Andrea, Mazzieri, Lorenzo

论文摘要

我们研究了严格的积极解决方案\ [ - Δu= n(n-2)u^{\ frac {n+2} {n+2} {n-2}},\],最喜欢$ d(o,x)^{ - (n-2)/2} $,在完全的nonnontonnonmonnonparpact $(m,n nontocation $(n nontocation)$(o,x)^{ - (n-2)/2 \ geq 3 $。我们证明,在对体积增长的额外假设下,不存在这种解决方案,除非$(m,g)$是$ \ mathbb {r}^n $和$ u $的等级,而$ u $是Talenti功能。该方法对沿$ u $的级别集进行了适当定义的合适函数进行基本分析。

We study strictly positive solutions to the critical Laplace equation \[ - Δu = n(n-2) u^{\frac{n+2}{n-2}}, \] decaying at most like $d(o, x)^{-(n-2)/2}$, on complete noncompact manifolds $(M, g)$ with nonnegative Ricci curvature, of dimension $n \geq 3$. We prove that, under an additional mild assumption on the volume growth, such a solution does not exist, unless $(M, g)$ is isometric to $\mathbb{R}^n$ and $u$ is a Talenti function. The method employs an elementary analysis of a suitable function defined along the level sets of $u$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源