论文标题

关于Sasakian结构的刚性和余弦歧管的表征

On the rigidity of the Sasakian structure and characterization of cosymplectic manifolds

论文作者

Rovenski, Vladimir, Patra, Dhriti Sundar

论文摘要

我们在平滑的歧管(称为“弱”结构)上介绍新的度量结构,该结构将几乎接触,sasakian,cosymplectic等概括。公制结构$(φ,ξ,η,g)$,并允许我们对经典理论进行新的了解。我们通过概括了几个众所周知的结果来证明这一说法。我们证明,任何Sasakian结构都是刚性的,即我们弱的Sasakian结构在同质上等同于Sasakian结构。我们表明,具有平行张量$φ$的弱接触结构是一个弱的固定结构,并在歧管产物上给出了这样的结构的例子。我们发现矢量场是弱接触式无穷小变化的条件。

We introduce new metric structures on a smooth manifold (called "weak" structures) that generalize the almost contact, Sasakian, cosymplectic, etc. metric structures $(φ,ξ,η,g)$ and allow us to take a fresh look at the classical theory. We demonstrate this statement by generalizing several well-known results. We prove that any Sasakian structure is rigid, i.e., our weak Sasakian structure is homothetically equivalent to a Sasakian structure. We show that a weak almost contact structure with parallel tensor $φ$ is a weak cosymplectic structure and give an example of such a structure on the product of manifolds. We find conditions for a vector field to be a weak contact infinitesimal transformation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源