论文标题

多目标多代理计划,用于发现和跟踪多个移动对象

Multi-Objective Multi-Agent Planning for Discovering and Tracking Multiple Mobile Objects

论文作者

Van Nguyen, Hoa, Vo, Ba-Ngu, Vo, Ba-Tuong, Rezatofighi, Hamid, Ranasinghe, Damith C.

论文摘要

我们考虑了一组代理团队的在线计划问题,以发现并从车载传感器测量值中发现并以不确定的测量对象来发现未知且随时间变化的对象。由于车载传感器的视野视野有限,因此通常基于跟踪对象或发现看不见的对象的通常计划策略不足。为了解决这个问题,我们制定了一个新的基于信息的多目标多代理控制问题,它是可观察到的马尔可夫决策过程(POMDP)。由于对象和多传感器测量之间的未知数据关联,因此由此产生的多代理计划问题呈指数级复杂。因此,计算最佳控制动作是棘手的。我们证明,所提出的多目标值函数是单调的子模具集合函数,它通过贪婪搜索以紧密的最优性结合通过贪婪的搜索来接受低成本的次优解决方案。所得的计划算法在传感器的对象和测量值中具有线性复杂性,而代理数量的二次。我们通过使用现实世界数据集的一系列数值实验来证明所提出的解决方案。

We consider the online planning problem for a team of agents to discover and track an unknown and time-varying number of moving objects from onboard sensor measurements with uncertain measurement-object origins. Since the onboard sensors have limited field-of-views, the usual planning strategy based solely on either tracking detected objects or discovering unseen objects is inadequate. To address this, we formulate a new information-based multi-objective multi-agent control problem, cast as a partially observable Markov decision process (POMDP). The resulting multi-agent planning problem is exponentially complex due to the unknown data association between objects and multi-sensor measurements; hence, computing an optimal control action is intractable. We prove that the proposed multi-objective value function is a monotone submodular set function, which admits low-cost suboptimal solutions via greedy search with a tight optimality bound. The resulting planning algorithm has a linear complexity in the number of objects and measurements across the sensors, and quadratic in the number of agents. We demonstrate the proposed solution via a series of numerical experiments with a real-world dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源