论文标题
基于错误的受控特征选择的仿基推断
Error-based Knockoffs Inference for Controlled Feature Selection
论文作者
论文摘要
最近,提出了Model-X仿冒品的方案,作为一种有前途的解决方案,以解决高维有限样本设置下受控特征选择。但是,模型X仿型的过程在很大程度上取决于基于系数的特征的重要性,并且仅涉及错误发现率(FDR)的控制。为了进一步提高其适应性和灵活性,在本文中,我们通过集成仿冒功能,基于错误的特征重要性统计和阶梯登录过程来提出一种基于错误的仿冒推理方法。提出的推理过程不需要指定回归模型,并且可以通过控制错误发现比例(FDP),FDR或K-Familywise错误率(K-FWER)来处理特征选择。经验评估证明了我们方法在模拟和真实数据上的竞争性能。
Recently, the scheme of model-X knockoffs was proposed as a promising solution to address controlled feature selection under high-dimensional finite-sample settings. However, the procedure of model-X knockoffs depends heavily on the coefficient-based feature importance and only concerns the control of false discovery rate (FDR). To further improve its adaptivity and flexibility, in this paper, we propose an error-based knockoff inference method by integrating the knockoff features, the error-based feature importance statistics, and the stepdown procedure together. The proposed inference procedure does not require specifying a regression model and can handle feature selection with theoretical guarantees on controlling false discovery proportion (FDP), FDR, or k-familywise error rate (k-FWER). Empirical evaluations demonstrate the competitive performance of our approach on both simulated and real data.