论文标题
利用多代理轨迹预测的先验
Leveraging Smooth Attention Prior for Multi-Agent Trajectory Prediction
论文作者
论文摘要
多代理相互作用对于预测其他代理的行为和轨迹的模型很重要。在某个时候,为了预测合理的未来轨迹,每个代理都需要注意与一小部分最相关的代理人的互动,而不是不必要地关注所有其他代理。但是,现有的注意力建模无视,人类在驾驶中的关注不会迅速变化,并且可能会在时间步骤中引起波动的关注。在本文中,我们基于总变化的时间平滑度为多代理相互作用制定了注意力模型,并提出了一种轨迹预测体系结构,以利用这些访问的相互作用的知识。我们展示了总体变异注意力以及新序列预测损失项如何导致对多代理轨迹预测的更平滑的注意力和更有效的样品学习,并通过将其与对综合和自然主义驱动数据的最先进方法进行比较,从而在预测准确性方面表现出了优势。我们演示了我们网站上的交互数据集上的轨迹预测算法的性能。
Multi-agent interactions are important to model for forecasting other agents' behaviors and trajectories. At a certain time, to forecast a reasonable future trajectory, each agent needs to pay attention to the interactions with only a small group of most relevant agents instead of unnecessarily paying attention to all the other agents. However, existing attention modeling works ignore that human attention in driving does not change rapidly, and may introduce fluctuating attention across time steps. In this paper, we formulate an attention model for multi-agent interactions based on a total variation temporal smoothness prior and propose a trajectory prediction architecture that leverages the knowledge of these attended interactions. We demonstrate how the total variation attention prior along with the new sequence prediction loss terms leads to smoother attention and more sample-efficient learning of multi-agent trajectory prediction, and show its advantages in terms of prediction accuracy by comparing it with the state-of-the-art approaches on both synthetic and naturalistic driving data. We demonstrate the performance of our algorithm for trajectory prediction on the INTERACTION dataset on our website.