论文标题

使用三层神经网络对非线性多机构系统的形成控制

Formation Control of Nonlinear Multi-Agent Systems Using Three-Layer Neural Networks

论文作者

Aryankia, Kiarash, Selmic, Rastko R.

论文摘要

本文考虑了由有向图建模的异质,二阶,不确定的,输入式,非线性多机构系统的领导者 - 遵循的形成控制问题。提出了一个可调的三层神经网络(NN),它使用输入层,两个隐藏层和一个输出层提出,以近似未知的非线性。与常用的试验和错误努力不同,在常规nn中选择神经元的数量,在这种情况下,\ textit {先验知识}知识允许人们在每个层中设置神经元的数量。使用Lyapunov理论得出了NN权重调整定律。领导者跟随和编队控制问题是通过反馈和基于NN的控制的迹象的鲁棒组成的。上升反馈术语弥补了未知的领导者动力学和代理误差动态中未知的,有界的干扰。基于NN的术语可以使用Lyapunov稳定性理论来严格证明了多机构系统动力学中未知的非线性,半全球渐近跟踪结果得到了严格证明。将本文的结果与以前的两个结果进行了比较,以评估所提出方法的效率和性能。

This paper considers a leader-following formation control problem for heterogeneous, second-order, uncertain, input-affine, nonlinear multi-agent systems modeled by a directed graph. A tunable, three-layer neural network (NN) is proposed with an input layer, two hidden layers, and an output layer to approximate an unknown nonlinearity. Unlike commonly used trial and error efforts to select the number of neurons in a conventional NN, in this case an \textit{a priori} knowledge allows one to set up the number of neurons in each layer. The NN weights tuning laws are derived using the Lyapunov theory. The leader-following and formation control problems are addressed by a robust integral of the sign of the error (RISE) feedback and a NN-based control. The RISE feedback term compensates for unknown leader dynamics and the unknown, bounded disturbance in the agent error dynamics. The NN-based term compensates for the unknown nonlinearity in the dynamics of multi-agent systems, and semi-global asymptotic tracking results are rigorously proven using the Lyapunov stability theory. The results of the paper are compared with two previous results to evaluate the efficiency and performance of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源