论文标题
基于逻辑的AI,可解释的棋盘游戏获胜者TSETLIN机器的预测
Logic-based AI for Interpretable Board Game Winner Prediction with Tsetlin Machine
论文作者
论文摘要
Hex是一个基于回合的两人连接游戏,具有较高的分支因素,使游戏随着板尺寸的增加而任意复杂。因此,弹奏十六进制的表现最佳算法依赖于使用神经网络对董事会位置的准确评估。但是,当用户想了解预测背后的推理时,神经网络的解释性有限是有问题的。在本文中,我们建议使用命题逻辑表达式来描述获胜和失去棋盘游戏的位置,从而促进精确的视觉解释。我们使用Tsetlin Machine(TM)从先前玩的游戏中学习这些表达式,描述了必须找到或不在位置的位置,以使董事会位置很强。 $ 6 \ times6 $板上的广泛实验将我们的基于TM的解决方案与流行的机器学习算法(如XGBoost,driventMl,决策树和神经网络)进行了比较,考虑了各种董事会配置,具有$ 2 $至$ 22 $ $ 22 $的移动。平均而言,TM测试精度为$ 92.1 \%$,表现优于所有其他评估的算法。我们进一步证明了逻辑表达式的全球解释,并将其映射到特定的棋盘游戏配置,以研究本地解释性。我们认为,由此产生的可解释性为准确的辅助AI和人类协作建立了基础,也为更复杂的预测任务提供了基础。
Hex is a turn-based two-player connection game with a high branching factor, making the game arbitrarily complex with increasing board sizes. As such, top-performing algorithms for playing Hex rely on accurate evaluation of board positions using neural networks. However, the limited interpretability of neural networks is problematic when the user wants to understand the reasoning behind the predictions made. In this paper, we propose to use propositional logic expressions to describe winning and losing board game positions, facilitating precise visual interpretation. We employ a Tsetlin Machine (TM) to learn these expressions from previously played games, describing where pieces must be located or not located for a board position to be strong. Extensive experiments on $6\times6$ boards compare our TM-based solution with popular machine learning algorithms like XGBoost, InterpretML, decision trees, and neural networks, considering various board configurations with $2$ to $22$ moves played. On average, the TM testing accuracy is $92.1\%$, outperforming all the other evaluated algorithms. We further demonstrate the global interpretation of the logical expressions and map them down to particular board game configurations to investigate local interpretability. We believe the resulting interpretability establishes building blocks for accurate assistive AI and human-AI collaboration, also for more complex prediction tasks.