论文标题

Cr-Twistor空间以$ g_2 $ - 和$ spin(7)$ - 结构

CR-twistor spaces over manifolds with $G_2$- and $Spin(7)$-structures

论文作者

Fiorenza, Domenico, Lê, Hông Vân

论文摘要

1984年,勒布伦(Lebrun)在任意的riemannian 3曼福尔德(Riemannian 3-Manifold)上建造了一个Cr-Twistor空间,并证明了CR结构是正式的。罗西(Rossi)在1985年以$ m $二维的利曼尼亚歧管(M $ M $)的形式概括了这种扭曲的建筑,并具有$(M-1)$ - 折叠矢量跨产品(VCP)。在2011年,Verbitsky概括了勒布朗(Lebrun)的扭曲空间的建设,达到了$ 7 $ -Manifolds,并具有$ G_2 $ - 结构。在本文中,我们统一并概括了勒布朗,罗西(Rossi's)和韦比茨基(Verbitsky)的CR-Twistor空间的构建,其中Riemannian歧管$(M,G)$具有VCP结构。我们表明,CR结构的形式可集成性是根据扭曲空间上的扭转张量表示的,这是$(M,G)$的Grassmanian Bundle。 If the VCP structure on $(M,g)$ is generated by a $G_2$- or $Spin(7)$-structure, then the vertical component of the torsion tensor vanishes if and only if $(M, g)$ has constant curvature, and the horizo​​ntal component vanishes if and only if $(M,g)$ is a torsion-free $G_2$ or $Spin(7)$-manifold.最后,我们讨论一些开放问题。

In 1984 LeBrun constructed a CR-twistor space over an arbitrary conformal Riemannian 3-manifold and proved that the CR-structure is formally integrable. This twistor construction has been generalized by Rossi in 1985 for $m$-dimensional Riemannian manifolds endowed with a $(m-1)$-fold vector cross product (VCP). In 2011 Verbitsky generalized LeBrun's construction of twistor-spaces to $7$-manifolds endowed with a $G_2$-structure. In this paper we unify and generalize LeBrun's, Rossi's and Verbitsky's construction of a CR-twistor space to the case where a Riemannian manifold $(M, g)$ has a VCP structure. We show that the formal integrability of the CR-structure is expressed in terms of a torsion tensor on the twistor space, which is a Grassmanian bundle over $(M, g)$. If the VCP structure on $(M,g)$ is generated by a $G_2$- or $Spin(7)$-structure, then the vertical component of the torsion tensor vanishes if and only if $(M, g)$ has constant curvature, and the horizontal component vanishes if and only if $(M,g)$ is a torsion-free $G_2$ or $Spin(7)$-manifold. Finally we discuss some open problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源