论文标题

横向倾斜度对气弹性悬臂棱镜的影响:现象学,不稳定力和基础强化现象

The Effects of Transverse Inclination on Aeroelastic Cantilever Prisms: Phenomenology, Unsteady Force, and the Base Intensification Phenomenon

论文作者

Chen, Zengshun, Bai, Jie, Li, Cruz Y, Xu, Yemeng, Hua, Jianmin, Xue, Xuanyi

论文摘要

当倾斜的结构经历了变化的攻击角度流入时,横向倾斜度是一种可能的情况。这项工作通过强制振动风洞实验研究了横向倾斜度对气体弹性棱镜的影响。空气动力学特征在不同的风速,倾斜角度和振荡幅度下进行三范围评估。结果表明,横向倾斜度从根本上改变了尾流现象学,从而构成固定末端的马蹄形涡流并破坏分离对称性。后果是棱镜基础附近空气动力学的两极曾经变化。马蹄形涡流的抑制释放了业力涡流,这大大增加了非稳定的跨风力。初始形态转换后,空气动力学变得独立于倾斜角和振荡振幅,并且仅取决于风速。结构的上部没有感觉到效果,因此这种现象称为基础强化。该现象仅对低速和体内政权产生显着影响,并且在高速,准稳态的疾驰方面无动于衷。实际上,基础强化会破坏释放的伯纳德·卡尔曼涡流脱落的行人级风环境,使其变得不稳定和狂热。此外,它将结构基部的空气动力负载增加多达4.3倍。由于固定端刚度可以防止弹性耗散,因此负载转化为巨大的压力,使检测更棘手和失败,如果发生,更突然,极端,没有任何警告。 4.3次放大还超过了许多标准设计的安全系数,因此横向倾斜度值得引起工程的关注。

The transverse inclination is a probable scenario when inclined structures experience an inflow of altered attack angles. This work investigates the effects of transverse inclination on an aeroelastic prism through forced-vibration wind tunnel experiments. The aerodynamic characteristics are tri-parametrically evaluated under different wind speeds, inclination angles, and oscillation amplitudes. Results show that transverse inclination fundamentally changes the wake phenomenology by impinging the fix-end horseshoe vortex and breaking the separation symmetry. The aftermath is a bi-polar, once-for-all change in the aerodynamics near the prism base. The suppression of the horseshoe vortex unleashes the Karman vortex, which significantly increases the unsteady crosswind force. After the initial morphology switch, the aerodynamics become independent of inclination angle and oscillation amplitude and depend solely on wind speed. The structure's upper portion does not feel the effect, so this phenomenon is called Base Intensification. The phenomenon only projects notable impacts on the low-speed and VIV regime and is indifferent in the high-speed, quasi-steady Galloping regime. In practice, Base Intensification will disrupt the pedestrian-level wind environment from the unleashed Bernard-Karman vortex shedding, making it erratic and gusty. Moreover, it increases the aerodynamic load at a structure base by as much as 4.3 times. Since fix-end stiffness prevents elastic dissipation, the load translates to massive stress, making detection trickier and failures, if they are to occur, more sudden, extreme, and without any warnings. The 4.3-time amplification also surpasses the safety factor of many standard designs, so transverse inclination deserves engineering attention.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源