论文标题

基于贝叶斯推断的碱性电解系统的在线动态参数估计

Online Dynamic Parameter Estimation of an Alkaline Electrolysis System Based on Bayesian Inference

论文作者

Qiu, Xiaoyan, Zhang, Hang, Qiu, Yiwei, Zhou, Buxiang, Zang, Tianlei, Qi, Ruomei, Lin, Jin, Wang, Jiepeng

论文摘要

当直接与波动的能源(例如风能和光电压功率)结合时,需要在动力到水(P2H)系统中的碱性电解(AEL)来灵活地通过动态调节其氢生产率来灵活操作。 AEL系统的挠性特性,例如加载范围和坡道速率受到重新介绍到AEL系统动态过程的某些参数的显着影响。这些选项通常很难直接衡量,甚至可能随着时间而变化。为了准确评估AEL系统在在线操作中的灵活性,本文介绍了基于贝叶斯推理的Markov Chain Monte Carlo(MCMC)方法来估计这些参数。同时,获得估计参数的后近关节概率分布是作为副产品获得的,该副产品为AEL系统提供了宝贵的物理见解。在25 kW电解酶上进行的实验验证了提出的PA-型估计方法。

When directly coupled with fluctuating energy sources such as wind and photovoltage power, the alkaline electrolysis (AEL) in a power-to-hydrogen (P2H) system is required to operate flexibly by dynamically adjusting its hydrogen production rate. The flex-ibility characteristics, e.g., loading range and ramping rate, of an AEL system are significantly influenced by some parameters re-lated to the dynamic processes of the AEL system. These parame-ters are usually difficult to measure directly and may even change with time. To accurately evaluate the flexibility of an AEL system in online operation, this paper presents a Bayesian Inference-based Markov Chain Monte Carlo (MCMC) method to estimate these parameters. Meanwhile, posterior joint probability distribu-tions of the estimated parameters are obtained as a byproduct, which provides valuable physical insight into the AEL systems. Experiments on a 25 kW electrolyzer validate the proposed pa-rameter estimation method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源