论文标题

牛顿 - 科恩科夫化学反应系统机构

Newton-Okounkov bodies of chemical reaction systems

论文作者

Obatake, Nida, Walker, Elise

论文摘要

尽管在多项式系统解决方案中具有著名的潜力,但由于应用而引起的牛顿 - 科恩科夫身体的具体例子很少。因此,在本文中,我们在化学反应网络的研究中介绍了牛顿 - 科恩科夫身体理论的新应用,并计算了几个示例。化学反应网络的重要不变是其最大阳性稳态数量,它被认为是参数化多项式系统的最大真实根数。在这里,我们在这个数字上介绍了一个新的上限,即化学反应网络的“牛顿 - 科恩科夫体界”。通过明确的示例,我们表明,网络界限的牛顿 - 科恩科夫身体在其最大阳性稳态数量上具有良好的上限。我们还比较了与相关上限(即化学反应网络的混合体积)结合的这个牛顿 - 科恩科夫的身体,并发现它通常可以实现更好的边界。

Despite their noted potential in polynomial-system solving, there are few concrete examples of Newton-Okounkov bodies arising from applications. Accordingly, in this paper, we introduce a new application of Newton-Okounkov body theory to the study of chemical reaction networks, and compute several examples. An important invariant of a chemical reaction network is its maximum number of positive steady states, which is realized as the maximum number of positive real roots of a parametrized polynomial system. Here, we introduce a new upper bound on this number, namely the `Newton-Okounkov body bound' of a chemical reaction network. Through explicit examples, we show that the Newton-Okounkov body bound of a network gives a good upper bound on its maximum number of positive steady states. We also compare this Newton-Okounkov body bound to a related upper bound, namely the mixed volume of a chemical reaction network, and find that it often achieves better bounds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源