论文标题
图像缝制的深矩形:学习基线
Deep Rectangling for Image Stitching: A Learning Baseline
论文作者
论文摘要
缝合的图像提供了广泛的视野(FOV),但遭受了不愉快的不规则边界。为了解决这个问题,现有的图像矩形方法致力于搜索初始网格并优化目标网格以在两个阶段形成网格变形。然后,可以通过翘曲的缝合图像来生成矩形图像。但是,这些解决方案仅适用于具有丰富线性结构的图像,从而导致对具有非线性物体的肖像和景观的明显扭曲。在本文中,我们通过提出第一个深度学习解决方案来解决这些问题。具体而言,我们预先定义一个刚性目标网格,仅估算一个初始网格以形成网格变形,从而有助于紧凑的一阶段解决方案。最初的网格是使用具有剩余渐进回归策略的完全卷积网络预测的。为了获得较高的内容保真度,提出了一个全面的目标函数,以同时鼓励边界矩形,网格形状具有呈现和内容在感知上是自然的。此外,我们构建了第一个图像缝合矩形数据集,其在不规则边界和场景中具有较大的多样性。实验证明了我们对传统方法的优越性,既有定量和定性。
Stitched images provide a wide field-of-view (FoV) but suffer from unpleasant irregular boundaries. To deal with this problem, existing image rectangling methods devote to searching an initial mesh and optimizing a target mesh to form the mesh deformation in two stages. Then rectangular images can be generated by warping stitched images. However, these solutions only work for images with rich linear structures, leading to noticeable distortions for portraits and landscapes with non-linear objects. In this paper, we address these issues by proposing the first deep learning solution to image rectangling. Concretely, we predefine a rigid target mesh and only estimate an initial mesh to form the mesh deformation, contributing to a compact one-stage solution. The initial mesh is predicted using a fully convolutional network with a residual progressive regression strategy. To obtain results with high content fidelity, a comprehensive objective function is proposed to simultaneously encourage the boundary rectangular, mesh shape-preserving, and content perceptually natural. Besides, we build the first image stitching rectangling dataset with a large diversity in irregular boundaries and scenes. Experiments demonstrate our superiority over traditional methods both quantitatively and qualitatively.