论文标题
在HMM框架中使用自适应信念传播的在线目标本地化
Online Target Localization using Adaptive Belief Propagation in the HMM Framework
论文作者
论文摘要
本文提出了一种新型的自适应样品基于空间的Viterbi算法,以在线方式定位。该方法依靠将目标的运动空间离散到代表有限数量的隐藏状态的单元格中。然后,通过隐藏的Markov模型(HMM)框架中的动态编程计算出最可能的轨迹轨迹。提出的方法使用贝叶斯估计框架,该框架既不限于高斯噪声模型,也不需要线性化的目标运动模型或传感器测量模型。但是,基于HMM的定位方法可能会遭受较差的计算复杂性,在这种情况下,由于高分辨率建模或在较大空间中的目标定位,隐藏状态的数量增加。为了提高这种差的计算复杂性,本文提出了在最可能的信念空间中依次低至高分辨率的信念传播,从而大大降低了所需的资源。所提出的方法的灵感来自计算机视野字段中常用的K-D树算法(例如Quadtree)。使用超宽带(UWB)传感器网络的实验测试证明了我们的结果。
This paper proposes a novel adaptive sample space-based Viterbi algorithm for target localization in an online manner. The method relies on discretizing the target's motion space into cells representing a finite number of hidden states. Then, the most probable trajectory of the tracked target is computed via dynamic programming in a Hidden Markov Model (HMM) framework. The proposed method uses a Bayesian estimation framework which is neither limited to Gaussian noise models nor requires a linearized target motion model or sensor measurement models. However, an HMM-based approach to localization can suffer from poor computational complexity in scenarios where the number of hidden states increases due to high-resolution modeling or target localization in a large space. To improve this poor computational complexity, this paper proposes a belief propagation in the most probable belief space with a low to high-resolution sequentially, reducing the required resources significantly. The proposed method is inspired by the k-d Tree algorithm (e.g., quadtree) commonly used in the computer vision field. Experimental tests using an ultra-wideband (UWB) sensor network demonstrate our results.