论文标题
在零温度下为无序系统的Kubo公式推导
Derivation of Kubo's formula for disordered systems at zero temperature
论文作者
论文摘要
这项工作证明了二维无序系统的霍尔电导的线性响应公式合理。证明基于控制与随机时间相关的哈密顿量相关的动力学。 主要的挑战与以下事实有关:光谱和动态定位在扰动下本质上是不稳定的,而确切的光谱流(以前用于控制这种情况下动力学的工具)不存在。我们通过证明局部绝热定理来解决此问题:具有很高的可能性,与随机系统相关的本地特征态$ψ$的物理演变仍然接近光谱流,以限制瞬时的汉密尔顿人到区域$ r $的限制,其中支持$ψ$的大部分。允许$ r $在最多及时地增长,可确保物理演变与该光谱流的偏差很小。 为了证实我们对无序系统中全球光谱流量失败的主张,我们证明了在所有尺度上的一维安德森模型中的特征向量杂交。
This work justifies the linear response formula for the Hall conductance of a two-dimensional disordered system. The proof rests on controlling the dynamics associated with a random time-dependent Hamiltonian. The principal challenge is related to the fact that spectral and dynamical localization are intrinsically unstable under perturbation, and the exact spectral flow - the tool used previously to control the dynamics in this context - does not exist. We resolve this problem by proving a local adiabatic theorem: With high probability, the physical evolution of a localized eigenstate $ψ$ associated with a random system remains close to the spectral flow for a restriction of the instantaneous Hamiltonian to a region $R$ where the bulk of $ψ$ is supported. Allowing $R$ to grow at most logarithmically in time ensures that the deviation of the physical evolution from this spectral flow is small. To substantiate our claim on the failure of the global spectral flow in disordered systems, we prove eigenvector hybridization in a one-dimensional Anderson model at all scales.