论文标题

对Monbti和Tanbti难治性多主体元件合金中化学短距离和脱位滑行的多尺度研究

Multi-scale Investigation of Chemical Short-Range Order and Dislocation Glide in the MoNbTi and TaNbTi Refractory Multi-Principal Element Alloys

论文作者

Zheng, Hui, Fey, Lauren T. W., Li, Xiang-Guo, Hu, Yong-Jie, Qi, Liang, Chen, Chi, Xu, Shuozhi, Beyerlein, Irene J., Ong, Shyue Ping

论文摘要

难治性的多主体元素合金(RMPEAS)是用于高温结构应用的有前途的材料。在这里,我们使用多尺度建模方法研究了化学短距离顺序(CSRO)对两种模型tanbti和monbti的脱位滑行的作用。为MO-TA-NB-TI系统开发了高度精确的机器学习间势,并用来证明Monbti表现出的SRO程度要比TANBTI大得多,并且局部组成对不稳定的堆叠断层能量(USFE)具有直接影响。从中尺度相位场错位动力学模拟中,我们发现增加SRO会导致更高的平均USFE,从而增加脱位滑行所需的应力。滑行位错因固定和由随机组成波动引起而引起的巨大硬化,而较高的SRO降低了USFE分散程度,因此,硬化量。最后,我们展示了扩展的位错环的形态如何受到施加的应力的影响,较高的SRO需要更高的施加应力才能实现光滑的螺钉位错滑动。

Refractory multi-principal element alloys (RMPEAs) are promising materials for high-temperature structural applications. Here, we investigate the role of chemical short-range ordering (CSRO) on dislocation glide in two model RMPEAs - TaNbTi and MoNbTi - using a multi-scale modeling approach. A highly accurate machine learning interatomic potential was developed for the Mo-Ta-Nb-Ti system and used to demonstrate that MoNbTi exhibits a much greater degree of SRO than TaNbTi and the local composition has a direct effect on the unstable stacking fault energies (USFE). From mesoscale phase-field dislocation dynamics simulations, we find that increasing SRO leads to higher mean USFEs, thereby increasing the stress required for dislocation glide. The gliding dislocations experience significant hardening due to pinning and depinning caused by random compositional fluctuations, with higher SRO decreasing the degree of USFE dispersion and hence, amount of hardening. Finally, we show how the morphology of an expanding dislocation loop is affected by the applied stress, with higher SRO requiring higher applied stresses to achieve smooth screw dislocation glide.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源