论文标题

Bakry-Ledoux等等不平等的定量估计值。 ii

Quantitative estimates for the Bakry-Ledoux isoperimetric inequality. II

论文作者

Mai, Cong Hung, Ohta, Shin-ichi

论文摘要

同意对加权的riemannian流形的量化等级,满足$ \ mathrm {ric} _ {\ infty} \ ge 1 $,我们给出了$ l^1 $ estimate的展览,表明指导函数的参考度量(从针术中引起)是接近尺度的参考度量。我们还显示$ l^p $ - 和$ w_2 $ - 估计$ 1 $维度的情况。

Concerning quantitative isoperimetry for a weighted Riemannian manifold satisfying $\mathrm{Ric}_{\infty} \ge 1$, we give an $L^1$-estimate exhibiting that the push-forward of the reference measure by the guiding function (arising from the needle decomposition) is close to the Gaussian measure. We also show $L^p$- and $W_2$-estimates in the $1$-dimensional case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源