论文标题
部分可观测时空混沌系统的无模型预测
Functional Clustering of Neuronal Signals with FMM Mixture Models
论文作者
论文摘要
未标记的神经元电信号的鉴定是神经科学中最具挑战性的开放问题之一,被广泛称为尖峰分类。我们在解决此问题的动机中提出了一种基于模型的方法,用于聚集振荡功能数据的混合模型框架,称为MixFMM。该方法的核心是FMM波,它们是非线性参数时间函数,足够灵活,可以描述不同的振荡模式,并且足够简单,可以有效估计。特别是,特定的模型参数描述了波形的相位,振幅和形状。使用FMM波作为基本函数和高斯错误定义了混合模型,并提出了EM算法来估计参数。此外,该方法还包括一种用于选择簇数量的方法。尖峰分类在文献中受到了很大的关注,传统上考虑了不同的功能聚类方法。我们将这些方法与MixFMM进行比较,其中包括模拟和真实数据的基准测试。 MixFMM方法在跨数据集的各种索引方面取得了出色的结果,并且在特定方案中获得的重大改进激发了有趣的神经元见解。
The identification of unlabelled neuronal electric signals is one of the most challenging open problems in neuroscience, widely known as Spike Sorting. Motivated to solve this problem, we propose a model-based approach within the mixture modeling framework for clustering oscillatory functional data called MixFMM. The core of the approach is the FMM waves, which are non-linear parametric time functions, flexible enough to describe different oscillatory patterns and simple enough to be estimated efficiently. In particular, specific model parameters describe the waveforms' phase, amplitude, and shape. A mixture model is defined using FMM waves as basic functions and gaussian errors, and an EM algorithm is proposed for estimating the parameters. In addition, the approach includes a method for the number of clusters selection. Spike Sorting has received considerable attention in the literature, and different functional clustering approaches have traditionally been considered. We compare those approaches with the MixFMM in a broad collection of datasets, including benchmarking simulated and real data. The MixFMM approach achieves outstanding results in a selection of indexes across datasets, and the significant improvements attained in specific scenarios motivate interesting neuronal insights.