论文标题

双管问题检测瞬间

Double-Barreled Question Detection at Momentive

论文作者

Jiang, Peng, Muppalla, Krishna Sumanth, Wei, Qing, Gopal, Chidambara Natarajan, Wang, Chun

论文摘要

Mommistive在市场研究,客户体验和企业反馈中提供解决方案。该技术从数十亿的真实回答中收集到平台上提出的问题。但是,人们可能会提出有偏见的问题。一个双管问题(DBQ)是一种偏见的问题,在一个问题中询问两个方面。例如,“您同意以下陈述:食物很美味,服务很棒。”此DBQ使受访者感到困惑,因为问题中有两个部分。 DBQ会影响调查受访者和调查所有者。 Momentive旨在检测DBQ,并建议调查创建者对收集高质量无偏见的调查数据进行更改。先前的研究工作表明,通过检查语法结合的存在来检测DBQ。尽管这是一种简单的基于规则的方法,但此方法容易出错,因为在正确构建的问题中也可以存在连词。我们为这项工作中提出了用于DBQ分类的端到端机器学习方法。我们使用主动学习处理了这些不平衡的数据,并比较了最新的嵌入算法以将文本数据转换为向量的数据。此外,我们提出了一种模型解释技术,将矢量级的形状值传播到问题中每个单词的形状值。我们得出的结论是,使用调查数据在离线实验中使用调查数据瞬间,具有最大池嵌入的Word2Vec子词嵌入具有最佳单词嵌入表示表示。 A/B测试和生产指标表明,该模型为业务带来了积极的变化。据我们所知,这是第一个用于DBQ检测的机器学习框架,它成功地将瞬间与竞争对手区分开来。我们希望我们的工作能阐明机器学习方法的偏见问题检测。

Momentive offers solutions in market research, customer experience, and enterprise feedback. The technology is gleaned from the billions of real responses to questions asked on the platform. However, people may create biased questions. A double-barreled question (DBQ) is a common type of biased question that asks two aspects in one question. For example, "Do you agree with the statement: The food is yummy, and the service is great.". This DBQ confuses survey respondents because there are two parts in a question. DBQs impact both the survey respondents and the survey owners. Momentive aims to detect DBQs and recommend survey creators to make a change towards gathering high quality unbiased survey data. Previous research work has suggested detecting DBQs by checking the existence of grammatical conjunction. While this is a simple rule-based approach, this method is error-prone because conjunctions can also exist in properly constructed questions. We present an end-to-end machine learning approach for DBQ classification in this work. We handled this imbalanced data using active learning, and compared state-of-the-art embedding algorithms to transform text data into vectors. Furthermore, we proposed a model interpretation technique propagating the vector-level SHAP values to a SHAP value for each word in the questions. We concluded that the word2vec subword embedding with maximum pooling is the optimal word embedding representation in terms of precision and running time in the offline experiments using the survey data at Momentive. The A/B test and production metrics indicate that this model brings a positive change to the business. To the best of our knowledge, this is the first machine learning framework for DBQ detection, and it successfully differentiates Momentive from the competitors. We hope our work sheds light on machine learning approaches for bias question detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源