论文标题
RNN嵌套命名实体识别的换能器,并在长序列的对齐方式上有约束
RNN Transducers for Nested Named Entity Recognition with constraints on alignment for long sequences
论文作者
论文摘要
命名实体识别(NER)的流行解决方案包括条件随机字段,序列到序列模型或利用问题交通框架。但是,它们不适用于具有较大本体论的嵌套和重叠跨度,并预测实体的位置。为了填补这一空白,我们引入了一个新的NER任务模型-RNN传感器(RNN-T)。这些模型是使用配对输入和输出序列训练的,而没有明确指定它们之间的对齐方式,类似于其他SEQ-to-seq模型。 RNN-T模型使用损失函数来学习对齐,该损失函数总和所有对齐。但是,在NER任务中,单词和目标标签之间的一致性可从人类注释中获得。我们提出了使用给定比对的固定对齐RNN-T模型,同时保留了RNN-TS的好处,例如建模输出依赖性。作为一个更普遍的情况,我们还提出了一个约束的对齐模型,用户可以在其中指定给定输入对齐的放松,并且该模型将在给定约束中学习一个对齐。换句话说,我们提出了一个Seq-to-seq模型家族,可以在可用时利用输入和目标序列之间的比对。通过对具有多个嵌套本体学的具有挑战性的现实医学NER任务进行的经验实验,我们证明我们的固定对齐模型的表现优于标准RNN-T模型,从而将F1得分从0.70提高到0.74。
Popular solutions to Named Entity Recognition (NER) include conditional random fields, sequence-to-sequence models, or utilizing the question-answering framework. However, they are not suitable for nested and overlapping spans with large ontologies and for predicting the position of the entities. To fill this gap, we introduce a new model for NER task -- an RNN transducer (RNN-T). These models are trained using paired input and output sequences without explicitly specifying the alignment between them, similar to other seq-to-seq models. RNN-T models learn the alignment using a loss function that sums over all alignments. In NER tasks, however, the alignment between words and target labels are available from the human annotations. We propose a fixed alignment RNN-T model that utilizes the given alignment, while preserving the benefits of RNN-Ts such as modeling output dependencies. As a more general case, we also propose a constrained alignment model where users can specify a relaxation of the given input alignment and the model will learn an alignment within the given constraints. In other words, we propose a family of seq-to-seq models which can leverage alignments between input and target sequences when available. Through empirical experiments on a challenging real-world medical NER task with multiple nested ontologies, we demonstrate that our fixed alignment model outperforms the standard RNN-T model, improving F1-score from 0.70 to 0.74.