论文标题

使用Diamond NV合奏的稳态微波模式冷却

Steady-state microwave mode cooling with a diamond NV ensemble

论文作者

Fahey, Donald P., Jacobs, Kurt, Turner, Matthew J, Choi, Hyeongrak, Hoffman, Jonathan E., Englund, Dirk, Trusheim, Matthew E.

论文摘要

量子力学的基本结果是,玻体场的波动由温度$ t $给出。根据Bose-Einstein分布$ \ bar {n} = k_bt / \hbarΩ$,在微波带中具有频率$ω$的电磁模式在室温下具有显着的热光子占用。例如,3 GHz模式的室温热状态的特征是平均光子号$ \ bar {n} \ sim 2000 $ and差异$Δn^2 \ abor bar {n}^2 $。这种热方差设置了从无线通信到定位,导航和时机再到磁共振成像的应用中的测量噪声。我们通过将其耦合到室温钻石中的光学自旋偏振氮胶合(NV)中心的合奏中连续冷却$ {\ sim} 3 $ GHz腔模式来克服这一障碍。 NV旋转通过绿色激光泵入低熵状态,并通过与微波光子的集体相互作用充当微波模式的散热器。使用简单的检测电路,我们报告了$ -2.3 \ pm 0.1 \,\ textrm {db} $的峰值噪声降低,最小腔模式温度为$ 150 \ pm 5 \ textrm {k} $。我们还提出了一个线性化模型,以识别冷却的重要特征,并通过磁性调整的,频谱分辨的测量来证明其有效性。在环境温度下的有效模式冷却的实现为精确测量和通信的应用打开了大门,有可能扩展到基本量子限制。

A fundamental result of quantum mechanics is that the fluctuations of a bosonic field are given by its temperature $T$. An electromagnetic mode with frequency $ω$ in the microwave band has a significant thermal photon occupation at room temperature according to the Bose-Einstein distribution $\bar{n} = k_BT / \hbarω$. The room temperature thermal state of a 3 GHz mode, for example, is characterized by a mean photon number $\bar{n} \sim 2000$ and variance $Δn^2 \approx \bar{n}^2$. This thermal variance sets the measurement noise floor in applications ranging from wireless communications to positioning, navigation, and timing to magnetic resonance imaging. We overcome this barrier in continuously cooling a ${\sim} 3$ GHz cavity mode by coupling it to an ensemble of optically spin-polarized nitrogen-vacancy (NV) centers in a room-temperature diamond. The NV spins are pumped into a low entropy state via a green laser and act as a heat sink to the microwave mode through their collective interaction with microwave photons. Using a simple detection circuit we report a peak noise reduction of $-2.3 \pm 0.1 \, \textrm{dB}$ and minimum cavity mode temperature of $150 \pm 5 \textrm{K}$. We present also a linearized model to identify the important features of the cooling, and demonstrate its validity through magnetically tuned, spectrally resolved measurements. The realization of efficient mode cooling at ambient temperature opens the door to applications in precision measurement and communication, with the potential to scale towards fundamental quantum limits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源