论文标题

S电量:时间序列分类的选择性随机卷积内核

S-Rocket: Selective Random Convolution Kernels for Time Series Classification

论文作者

Salehinejad, Hojjat, Wang, Yang, Yu, Yuanhao, Jin, Tang, Valaee, Shahrokh

论文摘要

随机卷积内核变换(火箭)是使用大量不同配置的大量独立的随机初始化的1-D卷积内核来提取时间序列的快速,高效和新颖的方法。每个时间序列上的卷积操作的输出由部分正值(PPV)表示。来自所有内核的PPV的串联是输入特征向量到脊回归分类器。与典型的深度学习模型不同,内核没有训练,并且内核或串联功能与分类器之间没有加权/训练的连接。由于这些内核是随机生成的,因此这些核中的一部分可能不会在模型的性能中积极贡献。因此,需要选择最重要的内核,并修剪冗余且不重要的内核,对于降低计算复杂性并加速了火箭在边缘设备上应用的推理。这些内核的选择是组合优化问题。在本文中,我们提出了一个方案,以在保持分类性能的同时选择这些内核。首先,原始型号已全额培训。然后,初始化了二元候选状态媒介的群体,其中矢量的每个元素代表内核的主动/非活动状态。基于人群的优化算法会进化人口,以便找到最佳的状态向量,该媒介可最大程度地减少主动核的数量,同时最大程度地提高分类器的准确性。该激活函数是活性内核总数的线性组合以及预训练的分类器与活动核的分类精度。最后,最佳状态矢量中选定的内核被用来用所选核训练山脊回归分类器。

Random convolution kernel transform (Rocket) is a fast, efficient, and novel approach for time series feature extraction using a large number of independent randomly initialized 1-D convolution kernels of different configurations. The output of the convolution operation on each time series is represented by a partial positive value (PPV). A concatenation of PPVs from all kernels is the input feature vector to a Ridge regression classifier. Unlike typical deep learning models, the kernels are not trained and there is no weighted/trainable connection between kernels or concatenated features and the classifier. Since these kernels are generated randomly, a portion of these kernels may not positively contribute in performance of the model. Hence, selection of the most important kernels and pruning the redundant and less important ones is necessary to reduce computational complexity and accelerate inference of Rocket for applications on the edge devices. Selection of these kernels is a combinatorial optimization problem. In this paper, we propose a scheme for selecting these kernels while maintaining the classification performance. First, the original model is pre-trained at full capacity. Then, a population of binary candidate state vectors is initialized where each element of a vector represents the active/inactive status of a kernel. A population-based optimization algorithm evolves the population in order to find a best state vector which minimizes the number of active kernels while maximizing the accuracy of the classifier. This activation function is a linear combination of the total number of active kernels and the classification accuracy of the pre-trained classifier with the active kernels. Finally, the selected kernels in the best state vector are utilized to train the Ridge regression classifier with the selected kernels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源