论文标题
在2D和3D高阶拓扑超导体中增强了强大的Majorana零模式
Dephasing enhanced strong Majorana zero modes in 2D and 3D higher-order topological superconductors
论文作者
论文摘要
在拓扑阶段,具有开放边界条件的1D Kitaev模型具有强大的Majorana零模式。这些是Fermion Parity-ODD操作员,几乎与哈密顿式的通勤,并在长期连贯的时期体现出来,以获得边缘的自由度。我们通过在描述2D和3D高阶超导体的模型中明确计算其封闭形式表达式,从而获得了此类Majorana运算符的较高维度对应物。由于存在如此强大的Majorana零模式,因此在这些模型中,Corner Majorana操作员无限温度自相关函数的相干时间随线性系统大小而差异。在某一类轨道选择性耗散动力学的存在下,拐角的一半的一半的相干时间增强了,而与单一病例相比,与剩余的角落衰减的时间相关性相对应快得多。我们在数值上证明了连贯性时间与无序的存在的鲁棒性。
The 1D Kitaev model in the topological phase, with open boundary conditions, hosts strong Majorana zero modes. These are fermion parity-odd operators that almost commute with the Hamiltonian and manifest in long coherence times for edge degrees of freedom. We obtain higher-dimensional counterparts of such Majorana operators by explicitly computing their closed form expressions in models describing 2D and 3D higher-order superconductors. Due to the existence of such strong Majorana zero modes, the coherence time of the infinite temperature autocorrelation function of the corner Majorana operators in these models diverges with the linear system size. In the presence of a certain class of orbital-selective dissipative dynamics, the coherence times of half of the corner Majorana operators is enhanced, while the time correlations corresponding to the remaining corner Majoranas decay much faster as compared with the unitary case. We numerically demonstrate robustness of the coherence times to the presence of disorder.