论文标题

总变异正规化的界限和无限度

Boundedness and unboundedness in total variation regularization

论文作者

Bredies, Kristian, Iglesias, José A., Mercier, Gwenael

论文摘要

我们考虑,即使测得的数据不属于$ l^\ infty $,对于线性反问题的总变化正则化的最小化是否属于$ l^\ infty $。我们提供了最小化参数的最小化器界限的简单证明,并在源条件下得出了足够小的噪声的均匀边界,并提供了足够的先验参数选择。为了表明,对于每个保真度项和维度,我们都无法预期这样的结果,我们计算出明确的径向无限的最小化器,这是通过证明与加权的一维deno deo denoing的等效性来实现的。最后,我们讨论了将这种结果扩展到相关的高阶正规化功能的可能性,从而获得了对第一阶和二阶总变化的虚拟卷积的积极答案。

We consider whether minimizers for total variation regularization of linear inverse problems belong to $L^\infty$ even if the measured data does not. We present a simple proof of boundedness of the minimizer for fixed regularization parameter, and derive the existence of uniform bounds for sufficiently small noise under a source condition and adequate a priori parameter choices. To show that such a result cannot be expected for every fidelity term and dimension we compute an explicit radial unbounded minimizer, which is accomplished by proving the equivalence of weighted one-dimensional denoising with a generalized taut string problem. Finally, we discuss the possibility of extending such results to related higher-order regularization functionals, obtaining a positive answer for the infimal convolution of first and second order total variation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源