论文标题

与离散和扩散接口方法的不断发展的接口,三重点和四倍点的比较

Comparison of evolving interfaces, triple points, and quadruple points for discrete and diffuse interface methods

论文作者

Eren, Erdem, Runnels, Brandon, Mason, Jeremy

论文摘要

界面的演变是许多物理过程的固有的,从流体中的空化到固体中的重结晶。界面运动的计算建模需要许多挑战,其中许多挑战与模拟过程中可能发生的拓扑转换范围有关。涉及晶界运动的多晶材料中的微观结构演化是一个特别复杂的例子,因为晶界特性的极端多样性,异质性和各向异性。准确地对此过程进行建模对于确定多晶材料中的加工结构 - 特制关系至关重要。在此类材料中微观结构演变的仿真通常使用漫射界面方法(例如相场方法),这些方法对于它们的多功能性和易于处理复杂的几何形状而有利,但由于需要高界面分辨率,因此可能会非常昂贵。离散的界面方法需要更少的网格点,因此可以表现出更好的性能,但受到相对较少的关注,这可能是由于保持网格的困难并始终如一地在晶界边界网络上实现拓扑转换。这项工作明确将最近开发的离散界面方法与多相现场方法进行了比较,该方法在几种与polcrystalline材料中的微观结构演化有关的经典问题上进行了比较:一种缩小的球形晶粒,稳态三连接二面角,以及稳态四倍的四倍点点二脑凹角。在每种情况下,都发现离散的方法符合或胜过多相现场方法,相对于可比较的细化水平的准确性,其潜在疗效是多晶材料中微结构演化的数值方法。

The evolution of interfaces is intrinsic to many physical processes ranging from cavitation in fluids to recrystallization in solids. Computational modeling of interface motion entails a number of challenges, many of which are related to the range of topological transitions that can occur over the course of the simulation. Microstructure evolution in a polycrystalline material that involves grain boundary motion is a particularly complex example due to the extreme variety, heterogeneity, and anisotropy of grain boundary properties. Accurately modeling this process is essential to determining processing-structure-property relationships in polycrystalline materials though. Simulations of microstructure evolution in such materials often use diffuse interface methods like the phase field method that are advantageous for their versatility and ease of handling complex geometries but can be prohibitively expensive due to the need for high interface resolution. Discrete interface methods require fewer grid points and can consequently exhibit better performance but have received comparatively little attention, perhaps due to the difficulties of maintaining the mesh and consistently implementing topological transitions on the grain boundary network. This work explicitly compares a recently-developed discrete interface method to a multiphase field method on several classical problems relating to microstructure evolution in polcrystalline materials: a shrinking spherical grain, the steady-state triple junction dihedral angle, and the steady-state quadruple point dihedral angle. In each case, the discrete method is found to meet or outperform the multiphase field method with respect to accuracy for comparable levels of refinement, demonstrating its potential efficacy as a numerical approach for microstructure evolution in polycrystalline materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源