论文标题
通过参数化方法的不变歧管的有限元近似
Finite Element Approximation of Invariant Manifolds by the Parameterization Method
论文作者
论文摘要
我们将不变流形的参数化方法与椭圆PDE的有限元方法结合在一起,以获得一个新的计算框架,用于与非线性抛物线抛物线PDE的不稳定平衡溶液相连的高阶近似近似值。参数化方法为不变歧管提供了一个无限的不变方程,我们通过功率系列ANSATZ解决该方程。功率匹配的参数导致线性椭圆PDE的递归系统(所谓的同源方程),其解决方案是参数化的功率序列系数。使用有限元近似值将同源方程式递归求解到任何所需的顺序。最终结果是对歧管的图表图的多项式扩展,在适当的有限元空间中具有系数。我们实施了具有多项式和非多项式非线性的各种示例问题,即在非凸二维多边形域(不需要简单地连接),用于具有摩尔斯摩尔斯一和两个的平衡解决方案。我们实施了A-tosteriori误差指标,该指标提供了数值证据,以支持该声明准确地计算出歧管的说法。
We combine the parameterization method for invariant manifolds with the finite element method for elliptic PDEs,to obtain a new computational framework for high order approximation of invariant manifolds attached to unstable equilibrium solutions of nonlinear parabolic PDEs. The parameterization method provides an infinitesimal invariance equation for the invariant manifold, which we solve via a power series ansatz. A power matching argument leads to a recursive system of linear elliptic PDEs -- the so-called homological equations -- whose solutions are the power series coefficients of the parameterization. The homological equations are solved recursively to any desired order using finite element approximation. The end result is a polynomial expansion for a chart map of the manifold, with coefficients in an appropriate finite element space. We implement the method for a variety of example problems having both polynomial and non-polynomial nonlinearities, on non-convex two-dimensional polygonal domains (not necessary simply connected), for equilibrium solutions with Morse indices one and two. We implement a-posteriori error indicators which provide numerical evidence in support of the claim that the manifolds are computed accurately.