论文标题
结合智能物联网分析的个人和联合网络行为
Combining Individual and Joint Networking Behavior for Intelligent IoT Analytics
论文作者
论文摘要
在接下来的十年中,IOT连接设备的IoT视野需要可靠的端到端连接和自动化设备管理平台。尽管我们已经看到了维持小型物联网测试台的成功努力,但有效地管理大规模设备部署的挑战存在很多挑战。使用工业物联网,结合了数百万个设备,传统的管理方法不能很好地扩展。在这项工作中,我们通过设计一组新型的机器学习技术来解决这些挑战,该技术构成了新工具的基础,它使用网络级别获得的流量特征来实现物联网设备管理。我们工具的设计是由对350家具有IoT部署的公司收集的1年长网络数据的分析来驱动的。对该数据的探索性分析表明,物联网环境遵循著名的帕累托原则,例如:(i)数据集中10%的公司占整个流量的90%; (ii)该集合中的所有公司中有7%拥有所有设备的90%。我们为需求预测设计和评估了CNN,LSTM和卷积LSTM模型,结论卷积LSTM模型是最好的。但是,维护和更新单个公司模型是昂贵的。在这项工作中,我们设计了一种新颖的可扩展方法,其中使用具有标准化因素的所有公司的组合数据构建了一般需求预测模型。此外,我们基于自动编码器引入了一种用于设备管理的新技术。他们会自动提取相关的设备功能,以识别具有与标记异常设备相似的行为的设备组。
The IoT vision of a trillion connected devices over the next decade requires reliable end-to-end connectivity and automated device management platforms. While we have seen successful efforts for maintaining small IoT testbeds, there are multiple challenges for the efficient management of large-scale device deployments. With Industrial IoT, incorporating millions of devices, traditional management methods do not scale well. In this work, we address these challenges by designing a set of novel machine learning techniques, which form a foundation of a new tool, it IoTelligent, for IoT device management, using traffic characteristics obtained at the network level. The design of our tool is driven by the analysis of 1-year long networking data, collected from 350 companies with IoT deployments. The exploratory analysis of this data reveals that IoT environments follow the famous Pareto principle, such as: (i) 10% of the companies in the dataset contribute to 90% of the entire traffic; (ii) 7% of all the companies in the set own 90% of all the devices. We designed and evaluated CNN, LSTM, and Convolutional LSTM models for demand forecasting, with a conclusion of the Convolutional LSTM model being the best. However, maintaining and updating individual company models is expensive. In this work, we design a novel, scalable approach, where a general demand forecasting model is built using the combined data of all the companies with a normalization factor. Moreover, we introduce a novel technique for device management, based on autoencoders. They automatically extract relevant device features to identify device groups with similar behavior to flag anomalous devices.