论文标题

具有通道知识图的多UAV无线网络的无衍生化放置优化

Derivative-Free Placement Optimization for Multi-UAV Wireless Networks with Channel Knowledge Map

论文作者

Li, Haoyun, Li, Peiming, Xu, Jie, Chen, Junting, Zeng, Yong

论文摘要

本文研究了一个多UAV无线网络,其中多个无人机用户共享相同的频谱,以分别向其相关的地面基站(GBSS)发送单个消息。无人机用户旨在优化其位置,以最大化加权总和。尽管大多数现有工作都考虑了简化的视线(LOS)或统计空气对地面(A2G)频道模型,但我们利用特定于位置的通道知识图(CKM)来增强实践中的位置性能。但是,由于CKM通常包含离散位点和特定于位置的通道数据,而没有分析模型函数,因此相应的加权总和率函数通常不可差异。在这种情况下,依赖功能衍生物的常规优化技术是不适用的,无法解决所得的放置优化问题。为了解决这个问题,我们提出了一种基于无导数优化的新型迭代算法。在每次迭代中,我们首先构建一个二次函数,以在一组插值条件下近似非差异的加权总和率,然后通过最大化近似二次函数来更新UAVS的位置位置,但受信任区域约束。数值结果显示了所提出的算法的收敛性。还表明,所提出的算法实现了基于详尽搜索的最佳设计的加权总和速率,其实施复杂性较低,并且它在基于简化的LOS渠道模型和启发式设计方面的常规优化方法明显优于常规优化方法,并且每个无人用的无用的悬停在其相关的GB上。

This paper studies a multi-UAV wireless network, in which multiple UAV users share the same spectrum to send individual messages to their respectively associated ground base stations (GBSs). The UAV users aim to optimize their locations to maximize the weighted sum rate. While most existing work considers simplified line-of-sight (LoS) or statistic air-to-ground (A2G) channel models, we exploit the location-specific channel knowledge map (CKM) to enhance the placement performance in practice. However, as the CKMs normally contain discrete site- and location-specific channel data without analytic model functions, the corresponding weighted sum rate function becomes non-differentiable in general. In this case, conventional optimization techniques relying on function derivatives are inapplicable to solve the resultant placement optimization problem. To address this issue, we propose a novel iterative algorithm based on the derivative-free optimization. In each iteration, we first construct a quadratic function to approximate the non-differentiable weighted sum rate under a set of interpolation conditions, and then update the UAVs' placement locations by maximizing the approximate quadratic function subject to a trust region constraint. Numerical results show the convergence of the proposed algorithm. It is also shown that the proposed algorithm achieves a weighted sum rate close to the optimal design based on exhaustive search with much lower implementation complexity, and it significantly outperforms the conventional optimization method based on simplified LoS channel models and the heuristic design with each UAV hovering above its associated GBS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源