论文标题

神经文本生成的最新进展:一项任务不足的调查

Recent Advances in Neural Text Generation: A Task-Agnostic Survey

论文作者

Tang, Chen, Guerin, Frank, Lin, Chenghua

论文摘要

近年来,已经大量研究致力于在自然语言生成(NLG)领域的神经模型的应用。主要目的是生成语言上天然和类似人类的文本,同时也对生成过程施加控制。本文对神经文本生成的最新进展进行了全面的任务不合命中率调查。这些进步已经通过多种发展促进,我们将其归类为四个关键领域:数据构建,神经框架,培训和推理策略以及评估指标。通过研究这些不同的方面,我们旨在为该领域取得的进度提供整体概述。此外,我们探讨了神经文本生成发展的未来方向,该方向涵盖了神经管道的利用和背景知识的结合。这些途径为进一步增强了NLG系统的能力提供了有希望的机会。总体而言,这项调查旨在巩固神经文本生成中的当前艺术状态,并突出了这个动态领域的未来研究和发展的潜在途径。

In recent years, considerable research has been dedicated to the application of neural models in the field of natural language generation (NLG). The primary objective is to generate text that is both linguistically natural and human-like, while also exerting control over the generation process. This paper offers a comprehensive and task-agnostic survey of the recent advancements in neural text generation. These advancements have been facilitated through a multitude of developments, which we categorize into four key areas: data construction, neural frameworks, training and inference strategies, and evaluation metrics. By examining these different aspects, we aim to provide a holistic overview of the progress made in the field. Furthermore, we explore the future directions for the advancement of neural text generation, which encompass the utilization of neural pipelines and the incorporation of background knowledge. These avenues present promising opportunities to further enhance the capabilities of NLG systems. Overall, this survey serves to consolidate the current state of the art in neural text generation and highlights potential avenues for future research and development in this dynamic field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源