论文标题
完全匿名共享内存系统中的选举:紧密的空间范围和算法
Election in Fully Anonymous Shared Memory Systems: Tight Space Bounds and Algorithms
论文作者
论文摘要
本文介绍了由$ n $异步过程组成的完全匿名系统中的选举,这些过程通过原子读取 - 写入寄存器或原子读取模式写入寄存器进行通信。给定一个整数$ d \ in \ {1,\ dots,n-1 \} $,考虑了两个选举问题:$ d $ - 选举(至少一个,最多最多$ d $流程)和确切的$ d $选举(恰好当选$ d $流程)。完全匿名意味着过程和共享寄存器都是匿名的。内存匿名意味着该过程可能会在共享寄存器的名称上不同意。也就是说,相同的寄存器名称$ a $可以表示不同过程的不同寄存器,并且一个过程使用的寄存器名称$ a $和另一个进程使用的寄存器名称$ b $可以解决相同的共享寄存器。
This article addresses election in fully anonymous systems made up of $n$ asynchronous processes that communicate through atomic read-write registers or atomic read-modify-write registers. Given an integer $d\in\{1,\dots, n-1\}$, two elections problems are considered: $d$-election (at least one and at most $d$ processes are elected) and exact $d$-election (exactly $d$ processes are elected). Full anonymity means that both the processes and the shared registers are anonymous. Memory anonymity means that the processes may disagree on the names of the shared registers. That is, the same register name $A$ can denote different registers for different processes, and the register name $A$ used by a process and the register name $B$ used by another process can address the same shared register.