论文标题

混合深度学习模型使用SPCAGAN扩展进行内部威胁分析

Hybrid Deep Learning Model using SPCAGAN Augmentation for Insider Threat Analysis

论文作者

Gayathri, R G, Sajjanhar, Atul, Xiang, Yong

论文摘要

来自组织可信赖的实体内部的网络攻击被称为内部威胁。使用深度学习的异常检测需要全面的数据,但是由于组织的机密问题,内幕威胁数据不容易获得。因此,出现了生成合成数据以探索增强的威胁分析方法的需求。我们提出了一个基于线性多种学习的生成对抗网络SPCAGAN,该网络从异质数据源中获取输入,并添加了一种新颖的损失功能来训练发电机以产生与原始数据分布相似的高质量数据。此外,我们引入了一个基于深度学习的混合模型,以用于内部威胁分析。我们为数据合成,异常检测,对抗鲁棒性和合成数据质量分析提供了广泛的实验。在这种情况下,经验比较表明,基于GAN的过采样具有竞争力,并且具有众多典型的过度采样制度。对于合成数据生成,我们的SPCAGAN模型克服了模式崩溃的问题,并且收敛的速度比以前的GAN模型更快。结果表明,我们所提出的方法的误差较低,更准确,并且比以前的模型产生了基本优越的合成内部威胁数据。

Cyberattacks from within an organization's trusted entities are known as insider threats. Anomaly detection using deep learning requires comprehensive data, but insider threat data is not readily available due to confidentiality concerns of organizations. Therefore, there arises demand to generate synthetic data to explore enhanced approaches for threat analysis. We propose a linear manifold learning-based generative adversarial network, SPCAGAN, that takes input from heterogeneous data sources and adds a novel loss function to train the generator to produce high-quality data that closely resembles the original data distribution. Furthermore, we introduce a deep learning-based hybrid model for insider threat analysis. We provide extensive experiments for data synthesis, anomaly detection, adversarial robustness, and synthetic data quality analysis using benchmark datasets. In this context, empirical comparisons show that GAN-based oversampling is competitive with numerous typical oversampling regimes. For synthetic data generation, our SPCAGAN model overcame the problem of mode collapse and converged faster than previous GAN models. Results demonstrate that our proposed approach has a lower error, is more accurate, and generates substantially superior synthetic insider threat data than previous models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源