论文标题
两相流的全球存在和较大的解决方案的时间行为
Global existence and large time behavior of weak solutions to the two-phase flow
论文作者
论文摘要
在本文中,我们考虑了一个两相流模型,该模型由可压缩的Navier-Stokes系统组成,具有简并粘度以及可压缩的Navier-Stokes系统,具有通过拖曳力持续的粘度,可以从Chapman-Enskog扩展中派生,用于可压缩的Navokes-Stokes-Stokes-vlasokes-vlasover-vlasov-vlasov-fokkker-planck-planck-planck。对于一般的初始数据,我们在三维周期域中建立了具有有限能量的弱解决方案的全球存在,并证明了全球弱解决方案与其平衡状态的收敛性,因为时间趋于无限。
In this paper, we consider a two-phase flow model consisting of the compressible Navier-Stokes systems with degenerate viscosity coupled with the compressible Navier-Stokes systems with constant viscosities via a drag force, which can be derived from Chapman-Enskog expansion for the compressible Navier-Stokes-Vlasov-Fokker-Planck system. For general initial data, we establish the global existence of weak solutions with finite energy to the initial value problem in the three-dimensional periodic domain, and prove the convergence of global weak solutions to its equilibrium state as the time tends to infinity.